Short-Term Load Forecasting Using Artificial Neural Network

نویسندگان

  • Muhammad Buhari
  • Sani Adamu
چکیده

-Artificial neural network (ANN) has been used for many years in sectors and disciplines like medical science, defence industry, robotics, electronics, economy, forecasts, etc. The learning property of ANN in solving nonlinear and complex problems called for its application to forecasting problems. This report present the development of an ANN based short-term load forecasting model for the 132/33KV subStation, Kano, Nigeria. The recorded daily load profile with a lead time of 1-24 hours for the year 2005 was obtained from the utility company. The Levenberg-Marquardt optimization technique which has one of the best learning rates was used as a back propagation algorithm for the Multilayer Feed Forward ANN model using MATLAB R2008b ANN Toolbox. Experiences gained during the development of the model regarding the selection of the input variables, the ANN structure, and the training parameters are described. The forecasted next day 24 hourly peak loads are obtained based on the stationary output of the ANN with a performance Mean Squared Error (MSE) of . and compares favorably with the actual Power utility data. The results have shown that the proposed technique is robust in forecasting future load demands for the daily operational planning of power system distribution sub-stations in Nigeria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

Short-term and Medium-term Gas Demand Load Forecasting by Neural Networks

The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real  concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...

متن کامل

Neural Networks in Electric Load Forecasting:A Comprehensive Survey

Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...

متن کامل

Short term electric load prediction based on deep neural network and wavelet transform and input selection

Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011